Mechanisms of System 1

Dr. Tiansi Dong, Prof. Dr. Christian Bauckhage
dongt@bit.uni-bonn.de, christian.bauckhage@iais.fraunhofer.de

March 2019, IPEC Winter School 2019
B-IT, University of Bonn
Outline

- Our reference book
- Reccap: System 1 vs. System 2
- Automatic Reactions of System 1
- Mechanisms of System 1
 - Priming Effect
 - Florida Effect
 - Halo Effect
 - WYSIATI
- Using Neural-Networks To Simulate System 1
Reccap: System 1 vs. System 2

The Invisible Gorilla

Selective Attention Test
from Simons & Chabris (1999)
Reccap: System 1 and System 2

- System 1 works automatically, effortlessly, quickly, no sense of control
Reccap: System 1 and System 2

- System 1 works automatically, effortlessly, quickly, no sense of control
- System 2 needs attention, effortful mental activities, follows rules, and works slow and lazy
System 1

Bananas Vomit
You experienced some unpleasant memories and images
You experienced some unpleasant memories and images
Your face twisted slightly in an expression of disgust
Automatic Reactions of System 1

- You experienced some unpleasant memories and images
- Your face twisted slightly in an expression of disgust
- You may even pull back your head
You experienced some unpleasant memories and images
Your face twisted slightly in an expression of disgust
You may even pull back your head
Your heart beats a bit faster
Mechanisms of System 1

- Why?
Mechanisms of System 1

- Why?
- Your mind automatically assumed a temporal sequence and a causal connection between *banana* and *vomit*, forming a scenario that *banana* caused *sickness*, which further caused *vomit*.
Mechanisms of System 1

- Associative Activation
Mechanisms of System 1

- **Associative Activation**

- Ideas that have been evoked trigger many other ideas, in a spreading cascade of activity in your brain.
Mechanisms of System 1

- Associative Activation
 - Ideas that have been evoked trigger many other ideas, in a spreading cascade of activity in your brain.
 - The essential feature is the coherence:
Mechanisms of System 1

- **Associative Activation**
- Ideas that have been evoked trigger many other ideas, in a spreading cascade of activity in your brain.
- The essential feature is the coherence:
 - A word evokes memories, which evoke emotions, which in turn evoke facial expressions, which intensify the feelings to which they link . . .
Mechanisms of System 1

- **Associative Activation**
- Ideas that have been evoked trigger many other ideas, in a spreading cascade of activity in your brain.
- The essential feature is the coherence:
- A word evokes memories, which evoke emotions, which in turn evoke facial expressions, which intensify the feelings to which they link . . .
- Psychologists’ representation: ideas are nodes in a vast **network** (associative memory), in which each idea is linked to many others.
Mechanisms of Associative Activation: Priming Effect

- Please search the internet of Campusmensa Poppelsdorf. What meals do you like?
Please search the internet of Campusmensa Poppelsdorf. What meals do you like?

Fill the letter to complete the word fragment SO_P
Mechanisms of Associative Activation: Priming Effect

- Please search the internet of Campusmensa Poppelsdorf. What meals do you like?
- Fill the letter to complete the word fragment SO_P
- *Priming Effect*
Mechanisms of Associative Activation: Priming Effect

- Please search the internet of Campusmensa Poppelsdorf. What meals do you like?
- Fill the letter to complete the word fragment SO_P
- *Priming Effect*
- *Priming Effect* goes beyond concepts and words
Experiment: two groups of students play word assembly game: given 5 words, they need to order them into a meaningful sentence.
Experiment: two groups of students play word assembly game: given 5 words, they need to order them into a meaningful sentence.

Words for group one: *finds, he, it, yellow, instantly*
Experiment: two groups of students play word assembly game: given 5 words, they need to order them into a meaningful sentence.

- Words for group one: *finds, he, it, yellow, instantly*
- Words for group two: *Florida, forgetful, in, she, became*
Experiment: two groups of students play word assembly game: given 5 words, they need to order them into a meaningful sentence.

Words for group one: *finds, he, it, yellow, instantly*

Words for group two: *Florida, forgetful, in, she, became*

After finishing this task, two groups are asked to walk to another office, to do another experiment.
Experiment: two groups of students play word assembly game: given 5 words, they need to order them into a meaningful sentence.

Words for group one: *finds, he, it, yellow, instantly*

Words for group two: *Florida, forgetful, in, she, became*

After finishing this task, two groups are asked to walk to another office, to do another experiment.

This walk was the target.
Experiment: two groups of students play word assembly game: given 5 words, they need to order them into a meaningful sentence.

- Words for group one: finds, he, it, yellow, instantly
- Words for group two: Florida, forgetful, in, she, became

After finishing this task, two groups are asked to walk to another office, to do another experiment.

- This walk was the target.
- Student in group two walked significantly more slowly than others.
Why?

Group two played with words associated with the elderly, such as Florida, forgetful, bald, grey, wrinkle. These words prime thoughts of old age, though the word old is never mentioned. These thoughts prime a behavior, walking slowly.
Why?

- Group two played with words associated with the elderly, such as Florida, forgetful, bald, grey, wrinkle
Mechanisms of Associative Activation: Florida Effect

Why?

- Group two played with words associated with the elderly, such as Florida, forgetful, bald, grey, wrinkle

- These words prime thoughts of old age, though the word old is never mentioned
Why?

- group two played with words associated with the elderly, such as Florida, forgetful, bald, grey, wrinkle
- These words prime thoughts of old age, though the word old is never mentioned
- These thoughts prime a behaviour, walking slowly
Primbing phenomena arise in System 1, and you have no conscious access to them.
Halo Effect: Exaggerated Emotional Coherence

- If you like a girl's appearance, you probably hope to like everything of her.
- If you dislike the appearance of a beggar, you probably dislike his everything.

Halo Effect plays a large role in shaping our view of people and situation. By utilizing Halo Effect, System 1 generates simpler and more coherent things than the real.
Mechanisms of Associative Activation: Halo Effect

- *Halo Effect: Exaggerated Emotional Coherence*
- If you like a girl’s appearance, you probably hope to like everything of her
Halo Effect: Exaggerated Emotional Coherence

If you like a girl’s appearance, you probably hope to like everything of her.

If you dislike the appearance of a beggar, you probably dislike his everything.
Halo Effect: Exaggerated Emotional Coherence

- If you like a girl’s appearance, you probably hope to like everything of her.
- If you dislike the appearance of a beggar, you probably dislike his everything.
- Halo Effect plays a large role in shaping our view of people and situation.
Halo Effect: Exaggerated Emotional Coherence

If you like a girl’s appearance, you probably hope to like everything of her.

If you dislike the appearance of a beggar, you probably dislike his everything.

Halo Effect plays a large role in shaping our view of people and situation.

By utilising Halo Effect, System 1 generates simpler and more coherent things than the real.
Mechanisms of Associative Activation: Halo Effect

- **Halo Effect: Exaggerated Emotional Coherence**
- If you like a girl’s appearance, you probably hope to like everything of her
- If you dislike the appearance of a beggar, you probably dislike his everything
- Halo Effect plays a large role in shaping our view of people and situation
- By utilising Halo Effect, System 1 generates simpler and more coherent things than the real.

- Suppress ambiguity in text understanding, e.g. bank, apple
Mechanisms of Associative Activation: WYSIATI

- WYSIATI: What You See Is All There IS
Mechanisms of Associative Activation: WYSIATI

- WYSIATI: What You See Is All There IS
- System 1 constructs the best possible story that incorporates ideas current activated
Mechanisms of Associative Activation: WYSIATI

- WYSIATI: What You See Is All There Is
- System 1 constructs the best possible story that incorporates ideas currently activated
- The measure of success for System 1 is the coherence of the story it manages to create
Mechanisms of Associative Activation: WYSIATI

- WYSIATI: What You See Is All There IS
- System 1 constructs the best possible story that incorporates ideas current activated
- The measure of success for System 1 is the coherence of the story it manages to create
- The amount and the quality of the data are irrelevant
Given images, each labelled with its category, a neural-network can create the *most compatibility* between images and their categories.
Given images, each labelled with its category, a neural-network can create the *most compatibility* between images and their categories.

After the training process, the neural-network can associate a new image with the most compatible category.
Given images, each labelled with its category, a neural-network can create the *most compatibility* between images and their categories.

After the training process, the neural-network can associate a new image with the most compatible category.

That is purely a behaviour of System 1.
Given images, each labelled with its category, a neural-network can create the *most compatibility* between images and their categories.

After the training process, the neural-network can associate a new image with the most compatible category.

That is purely a behaviour of System 1.

How shall we deal with the sparse data problem in neural-networks?
Using Neural-Networks To Simulate System 1

- Given images, each labelled with its category, a neural-network can create the *most compatibility* between images and their categories.
- After the training process, the neural-network can associate a new image with the most compatible category.
- That is purely a behaviour of System 1.
- How shall we deal with the sparse data problem in neural-networks?
- If this neural-network is an AI system, it shall not be defeated by the sparse data problem.
Using Neural-Networks To Simulate System 1

- Given images, each labelled with its category, a neural-network can create the *most compatibility* between images and their categories.
- After the training process, the neural-network can associate a new image with the most compatible category.
- That is purely a behaviour of System 1.
- How shall we deal with the sparse data problem in neural-networks?
- If this neural-network is an AI system, it shall not be defeated by the sparse data problem.
- Let us equip it with WYSIATI, Halo Effect, Priming Effect.