Familiar With Back-Propagation Step by Step

Dr. Tiansi Dong, Prof. Dr. Christian Bauckhage
dongt@bit.uni-bonn.de, christian.bauckhage@iais.fraunhofer.de

March 2019, IPEC Winter School 2019
B-IT, University of Bonn
The back-propagation algorithm is the fundamental algorithm in Deep Learning.
The back-propagation algorithm is the fundamental algorithm in Deep Learning.

Let us learn this algorithm by coding.
The back-propagation algorithm is the fundamental algorithm in Deep Learning.
Let us learn this algorithm by coding.
Experiment
You are in this maze, equipped with a computer, and given a route instruction.
Now, the instruction reaches the end, you are still in the maze
Now, the instruction reaches the end, you are still in the maze

What can you do?
The Problem

- Now, the instruction reaches the end, you are still in the maze
- What can you do?
- Build a neural network to tell you the next action!
Let the given route instruction be $ROUTE = [R_1, R_2, \ldots, R_n]$.
Let the given route instruction be $ROUTE = [R_1, R_2, \ldots, R_n]$. As there are only four unit instructions, we encode R_i by a two-element vector as follows:
Let the given route instruction be $ROUTE = [R_1, R_2, \ldots, R_n]$. As there are only four unit instructions, we encode R_i by a two-element vector as follows:

- $R_1 =$ turn-left: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $R_2 =$ turn-right: $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, go-ahead: $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, turn-around: $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$.
Neural Network

(a)

(b)

(c)
The inputs of the hidden layer are computed by the following matrix

\[
\begin{bmatrix}
h_{1in} \\
h_{2in}
\end{bmatrix} =
\begin{bmatrix}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23}
\end{bmatrix} \cdot
\begin{bmatrix}
i_1 \\
i_2 \\
b_1
\end{bmatrix}
\]

(1)
Hidden Layer

- Logistic Function

\[
 h_{1\text{out}} = \frac{1}{1 + e^{-h_{1\text{in}}}} \quad (2)
\]

\[
 h_{2\text{out}} = \frac{1}{1 + e^{-h_{2\text{in}}}} \quad (3)
\]
Hidden Layer

- Logistic Function

\[
h_{1\text{out}} = \frac{1}{1 + e^{-h_{1\text{in}}}} \tag{2}
\]

\[
h_{2\text{out}} = \frac{1}{1 + e^{-h_{2\text{in}}}} \tag{3}
\]

- The inputs to the output layer are computed by the following matrix

\[
\begin{bmatrix}
 o_{1\text{in}} \\
 o_{2\text{in}}
\end{bmatrix} =
\begin{bmatrix}
 V_{11} & V_{12} & V_{13} \\
 V_{21} & V_{22} & V_{23}
\end{bmatrix}
\cdot
\begin{bmatrix}
 h_{1\text{out}} \\
 h_{2\text{out}} \\
 b_2
\end{bmatrix} \tag{4}
\]
Output Layer

The logistic function to use in the output layer.

\[o_{1\text{out}} = \frac{2}{1 + e^{-o_{1\text{in}}}} - 1 \]
\[o_{2\text{out}} = \frac{2}{1 + e^{-o_{2\text{in}}}} - 1 \]
Initial Values

We initialise values of \(w_{ij} = v_{ij} = 0.5 \), and \(b_1 = b_2 = 1 \).
The first instruction in the route is R_1.

$$\begin{bmatrix} h_{1\text{in}} \\ h_{2\text{in}} \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix} \cdot \begin{bmatrix} i_1 \\ i_2 \\ b_1 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$h_{1\text{out}} = \frac{1}{1 + e^{-h_{1\text{in}}}} = \frac{1}{1 + e^{-1}} = 0.731$$ \hspace{1cm} (7)

$$h_{2\text{out}} = \frac{1}{1 + e^{-h_{2\text{in}}}} = \frac{1}{1 + e^{-1}} = 0.731$$ \hspace{1cm} (8)
\[
\begin{bmatrix}
o_{1in} \\
o_{2in}
\end{bmatrix} =
\begin{bmatrix}
v_{11} & v_{12} & v_{13} \\
v_{21} & v_{22} & v_{23}
\end{bmatrix} \cdot
\begin{bmatrix}
h_{1out} \\
h_{2out} \\
b_2
\end{bmatrix}
= \begin{bmatrix}
0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5
\end{bmatrix} \cdot
\begin{bmatrix}
0.731 \\
0.731 \\
1
\end{bmatrix}
= \begin{bmatrix}
1.231 \\
1.231
\end{bmatrix}
\]

\[
o_{1out} = \frac{2}{1 + e^{-o_{1in}}} - 1 = \frac{2}{1 + e^{-1.231}} - 1 = 0.547
\]

\[
o_{2out} = \frac{2}{1 + e^{-o_{2in}}} - 1 = \frac{2}{1 + e^{-1.231}} - 1 = 0.547
\]
We would interpret the result as a route instruction, which is an orientation information.
Energy Cost

- We would interpret the result as a route instruction, which is an orientation information.
- The second instruction should be $R_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, which is quite different to the computed value.
Energy Cost

- We would interpret the result as a route instruction, which is an orientation information.

- The second instruction should be $R_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, which is quite different to the computed value.

- We use $\cos(R_{true}, R_{out})$ to measure the quality of the computed orientation: the best case would be 1, the worse case would be -1.
Energy Cost

- We would interpret the result as a route instruction, which is an orientation information.
- The second instruction should be $R_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, which is quite different to the computed value.
- We use $\cos(R_{true}, R_{out})$ to measure the quality of the computed orientation: the best case would be 1, the worse case would be -1.
- We compute the error $E = 1 - \cos(R_{true}, R_{out})$, so that in the best case $E = 0$, and in the worse case $E = 2$.
Energy Cost

- We would interpret the result as a route instruction, which is an orientation information.
- The second instruction should be \(R_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \), which is quite different to the computed value.
- We use \(\cos(R_{true}, R_{out}) \) to measure the quality of the computed orientation: the best case would be 1, the worse case would be -1.
- We compute the error \(E = 1 - \cos(R_{true}, R_{out}) \), so that in the best case \(E = 0 \), and in the worse case \(E = 2 \).
- Our first error value \(E = 1 - \cos(\begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0.547 \\ 0.547 \end{bmatrix}) = 1.7071 \).
Backward Updating 1

- We need to update parameters to reduce errors.
Backward Updating 1

- We need to update parameters to reduce errors.
- The question is simple: Shall we increase or decrease a parameter?
We need to update parameters to reduce errors.
The question is simple: Shall we increase or decrease a parameter?
We only need to compute the partial derivative of this parameter to the total error E.

$$\frac{\partial E}{\partial v_{11}} = \frac{\partial E}{\partial o_{1out}} \times \frac{\partial o_{1out}}{\partial o_{1in}} \times \frac{\partial o_{1in}}{\partial v_{11}}$$ \hspace{1cm} (11)$$

$$E = 1 - \cos(\begin{bmatrix} o_{1true} \\ o_{2true} \end{bmatrix}, \begin{bmatrix} o_{1out} \\ o_{2out} \end{bmatrix})$$ \hspace{1cm} (12)$$

$$E = 1 - \frac{o_{1true} o_{1out} + o_{2true} o_{2out}}{\sqrt{o_{1true}^2 + o_{2true}^2} \sqrt{o_{1out}^2 + o_{2out}^2}}$$ \hspace{1cm} (13)$$
Backward Updating 2

\[
\frac{\partial E}{\partial o_{1\text{out}}} = -\frac{\partial}{\partial o_{1\text{true}} o_{1\text{out}} + o_{2\text{true}} o_{2\text{out}}} \frac{\sqrt{o_{1\text{true}}^2 + o_{2\text{true}}^2} \sqrt{o_{1\text{out}}^2 + o_{2\text{out}}^2}}{\sqrt{o_{1\text{true}}^2 + o_{2\text{true}}^2} \sqrt{o_{1\text{out}}^2 + o_{2\text{out}}^2}}
\]

\[
= -\frac{\sqrt{o_{1\text{true}}^2 + o_{2\text{true}}^2} \sqrt{o_{1\text{out}}^2 + o_{2\text{out}}^2}}{\sqrt{o_{1\text{true}}^2 + o_{2\text{true}}^2} \sqrt{o_{1\text{out}}^2 + o_{2\text{out}}^2}} \frac{\partial o_{1\text{true}} o_{1\text{out}} + o_{2\text{true}} o_{2\text{out}}}{\partial o_{1\text{true}}}
\]

\[
= -\frac{\sqrt{o_{1\text{true}}^2 + o_{2\text{true}}^2} \sqrt{o_{1\text{out}}^2 + o_{2\text{out}}^2}}{\sqrt{o_{1\text{true}}^2 + o_{2\text{true}}^2} \sqrt{o_{1\text{out}}^2 + o_{2\text{out}}^2}} \frac{(o_{1\text{true}} o_{1\text{out}} + o_{2\text{true}} o_{2\text{out}})}{(o_{1\text{true}}^2 + o_{2\text{true}}^2)(o_{1\text{out}}^2 + o_{2\text{out}}^2)}
\]

\[
= -\frac{\sqrt{o_{1\text{true}}^2 + o_{2\text{true}}^2} \sqrt{o_{1\text{out}}^2 + o_{2\text{out}}^2}}{\sqrt{o_{1\text{true}}^2 + o_{2\text{true}}^2} \sqrt{o_{1\text{out}}^2 + o_{2\text{out}}^2}} \frac{\partial o_{1\text{true}} o_{1\text{out}} + o_{2\text{true}} o_{2\text{out}}}{\partial o_{1\text{true}}}
\]

\[
= -\frac{\sqrt{o_{1\text{true}}^2 + o_{2\text{true}}^2} \sqrt{o_{1\text{out}}^2 + o_{2\text{out}}^2}}{\sqrt{o_{1\text{true}}^2 + o_{2\text{true}}^2} \sqrt{o_{1\text{out}}^2 + o_{2\text{out}}^2}} \frac{\partial o_{1\text{true}} o_{1\text{out}} + o_{2\text{true}} o_{2\text{out}}}{\partial o_{1\text{true}}}
\]

\[
= 0.6463
\]
Backward Updating 3

\[
\frac{\partial o_{1\text{out}}}{\partial o_{1\text{in}}} = o_{1\text{out}}(1 - o_{1\text{out}}) = 0.547 \times (1 - 0.547) = 0.2478
\]

\[
\frac{\partial o_{1\text{in}}}{\partial v_{11}} = \frac{\partial(v_{11} h_{1\text{out}} + v_{12} h_{2\text{out}} + v_{13} b_2)}{\partial v_{11}} = h_{1\text{out}} = 0.731
\]

Therefore,

\[
\frac{\partial E}{\partial v_{11}} = \frac{\partial E}{\partial o_{1\text{out}}} \times \frac{\partial o_{1\text{out}}}{\partial o_{1\text{in}}} \times \frac{\partial o_{1\text{in}}}{\partial v_{11}} \quad (14)
\]

\[
= 0.6463 \times 0.2478 \times 0.731
\]

\[
= 0.1171 \quad (16)
\]
To decrease the value of E, we need to decrease v_{11} as follows.

\[
v^{(next)}_{11} = v_{11} - \eta \frac{\partial E}{\partial v_{11}} = 0.5 - 10 \times 0.1171 = -0.671
\]

\[
v^{(next)}_{12} = v_{12} - \eta \frac{\partial E}{\partial v_{12}} = 0.5 - 10 \times 0.1171 = -0.671
\]

\[
v^{(next)}_{13} = v_{13} - \eta \frac{\partial E}{\partial v_{13}} = 0.5 - 10 \times 0.160 = -1.1
\]

\[
v^{(next)}_{21} = v_{21} - \eta \frac{\partial E}{\partial v_{21}} = 0.5 - 10 \times (-0.1171) = 1.6171
\]

\[
v^{(next)}_{22} = v_{22} - \eta \frac{\partial E}{\partial v_{22}} = 0.5 - 10 \times (-0.1171) = 1.6171
\]

\[
v^{(next)}_{23} = v_{23} - \eta \frac{\partial E}{\partial v_{23}} = 0.5 - 10 \times (-0.160) = 2.1
\]
Next, we need to update w_{ij}

\[
\frac{\partial E}{\partial w_{11}} = \frac{\partial E}{\partial h_{1\text{out}}} \times \frac{\partial h_{1\text{out}}}{\partial h_{1\text{in}}} \times \frac{\partial h_{1\text{in}}}{\partial w_{11}} \\
= \frac{\partial E}{\partial o_{1\text{out}}} \times \frac{\partial o_{1\text{out}}}{\partial o_{1\text{in}}} \times \frac{\partial o_{1\text{in}}}{\partial h_{1\text{out}}} \times \frac{\partial h_{1\text{out}}}{\partial h_{1\text{in}}} \times \frac{\partial h_{1\text{in}}}{\partial w_{11}} \\
+ \frac{\partial E}{\partial o_{2\text{out}}} \times \frac{\partial o_{2\text{out}}}{\partial o_{2\text{in}}} \times \frac{\partial o_{2\text{in}}}{\partial h_{1\text{out}}} \times \frac{\partial h_{1\text{out}}}{\partial h_{1\text{in}}} \times \frac{\partial h_{1\text{in}}}{\partial w_{11}} \\
= \frac{\partial E}{\partial o_{1\text{out}}} \times \frac{\partial o_{1\text{out}}}{\partial o_{1\text{in}}} v_{11}^{(\text{next})} \times \frac{\partial h_{1\text{out}}}{\partial h_{1\text{in}}} \times \frac{\partial h_{1\text{in}}}{\partial w_{11}} \\
+ \frac{\partial E}{\partial o_{2\text{out}}} \times \frac{\partial o_{2\text{out}}}{\partial o_{2\text{in}}} v_{21}^{(\text{next})} \times \frac{\partial h_{1\text{out}}}{\partial h_{1\text{in}}} \times \frac{\partial h_{1\text{in}}}{\partial w_{11}} \\
= 0.6463 \times 0.2478 \times (−0.671) \times 0.731 \times 0.269 \times 1 \\
+ (−0.6463) \times 0.2478 \times 1.6171 \times 0.731 \times 0.269 \times 1 \\
= −0.0721
\]
Backward Updating 6

\[
\begin{align*}
\hat{w}_{11} & = w_{11} - \eta \frac{\partial E}{\partial w_{11}} = 0.5 - 10 \times (-0.0721) = 1.221 \\
\hat{w}_{12} & = w_{12} - \eta \frac{\partial E}{\partial w_{12}} = 0.5 - 10 \times 0 = 0 \\
\hat{w}_{13} & = w_{13} - \eta \frac{\partial E}{\partial w_{13}} = 0.5 - 10 \times (-0.0721) = 1.221 \\
\hat{w}_{21} & = w_{21} - \eta \frac{\partial E}{\partial w_{21}} = 0.5 - 10 \times (-0.0721) = 1.221 \\
\hat{w}_{22} & = w_{22} - \eta \frac{\partial E}{\partial w_{22}} = 0.5 - 10 \times 0 = 0 \\
\hat{w}_{23} & = w_{23} - \eta \frac{\partial E}{\partial w_{23}} = 0.5 - 10 \times (-0.0721) = 1.221
\end{align*}
\]
After this parameter update, we have the

\[
\begin{bmatrix}
 h_{1in} \\
 h_{2in}
\end{bmatrix} = \begin{bmatrix}
 w_{11} & w_{12} & w_{13} \\
 w_{21} & w_{22} & w_{23}
\end{bmatrix} \cdot \begin{bmatrix}
 i_1 \\
 i_2 \\
 b_1
\end{bmatrix}
\]

(17)

\[
= \begin{bmatrix}
 1.221 & 0 & 1.221 \\
 1.221 & 0 & 1.221
\end{bmatrix} \cdot \begin{bmatrix}
 1 \\
 0 \\
 1
\end{bmatrix}
\]

(18)

\[
= \begin{bmatrix}
 2.442 \\
 2.442
\end{bmatrix}
\]

(19)

\[
h_{1out} = \frac{1}{1 + e^{-h_{1in}}} = \frac{1}{1 + e^{-2.442}} = 0.92
\]

(20)

\[
h_{2out} = \frac{1}{1 + e^{-h_{2in}}} = \frac{1}{1 + e^{-2.442}} = 0.92
\]

(21)
\[
\begin{bmatrix}
\sigma_{1in} \\
\sigma_{2in}
\end{bmatrix} =
\begin{bmatrix}
v_{11} & v_{12} & v_{13} \\
v_{21} & v_{22} & v_{23}
\end{bmatrix} \cdot \begin{bmatrix}
h_{1out} \\
h_{2out} \\
b_2
\end{bmatrix}
\]
\[
= \begin{bmatrix}
-0.671 & -0.671 & -1.1 \\
1.6171 & 1.6171 & 2.1
\end{bmatrix} \cdot \begin{bmatrix}
0.92 \\
0.92 \\
1
\end{bmatrix}
\]
\[
= \begin{bmatrix}
-2.335 \\
5.075
\end{bmatrix}
\]

\[
\sigma_{1out} = \frac{2}{1 + e^{-\sigma_{1in}}} - 1 = \frac{2}{1 + e^{2.335}} - 1 = -0.823
\]

\[
\sigma_{2out} = \frac{2}{1 + e^{-\sigma_{2in}}} - 1 = \frac{2}{1 + e^{-5.075}} - 1 = 0.988
\]
With these update parameters, the error E reduces to

$$1 - \cos\left(\begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -0.823 \\ 0.988 \end{bmatrix}\right) = 0.35$$
Implement above way-finding tool in Python, and push the code into your github.
Implement above way-finding tool in Python, and push the code into your github.

reference https://julien.danjou.info/starting-your-first-python-project/
Coding

- Implement above way-finding tool in Python, and push the code into your github.
- reference https://julien.danjou.info/starting-your-first-python-project/
- Have fun!